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Abstract: The addition of dimethyl 2,4-hexadienylmalonate to the iron-complexed 2-

methoxycyclohexadienylium ion provides access to a 4-(3,5-heptadienyl)-substituted

cyclohexenone. The ethylaluminum dichloride-promoted intramolecular Diels-Alder

reaction to a hydroacenaphthene derivative proceeds with complete exo selectivity.

© 1997 Elsevier Science Ltd.
Because of the regiodirecting effect of the 2-methoxy substituent the tricarbonyl(nS-2-methoxy-
cyclohexadienyl)iron cation represents the synthetic equivalent of a 2-cyclohexenon-4-yl cation.2 Thus, the
addition of nucleophiles followed by demetalation and hydrolysis of the enol ether affords 4-substituted
2-cyclohexenones. An introduction of conjugated dienes attached to the nucleophiles should provide precursors
for intramolecular Diels-Alder cycloadditions leading to annulated hydronaphthalene derivatives.3# In
connection with our project directed towards the applications of transition metal complexes in organic
synthesis,> we became interested in using this strategy for the stereoselective synthesis of substituted
perhydroacenaphthene derivatives. In this paper we describe the optimization of the intramolecular Diels-Alder
cycloaddition and diastereoselective reactions of the product.
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Table 1. Optimization of the intramolecular Diels-Alder reaction of 4.
Dimethyl 2,4-hexadienylmalonate

Reaction Conditions 5, Yield [%] Ratio 5a/5b 1 was prepared in three steps from
xylene, 140°C, 20 h 44 3.1 ethyl sorbate acczrding to a
li X ; -
CF3COOH, CH,Cly, 40°C 51 7.1 fterature p.rocedufe Dep'rotona
A tion of 1 with sodium hydride and
SnCly, CHyClp, 40 to —5°C 19 1:0 addition to a solution of the
BF;-Et;0, Et;0,-15 t0 15°C 51 1:0 complex salt 2 afforded diastereo-
TiCly, CH,Cly, 60 to 0°C 53 1:1 selectively the iron complex 3
ZiCly, CH,Cly, =30 to 0°C 68 1:0 (Scheme 1). Demetalation of 3
. . . S
WCl, CH,Cly, —60 to ~35°C 61 1:0 using trimethylamine N-oxide’ and
AICL. CHsCly. —50 10 —15°C 64 1:0 subsequent cleavage of the enol
3, LHgtlp, U 10~ ' ether provided the cyclohexenone
EtyAICl, CH,Clp, -30 to 25°C 60 1:0 4. The intramolecular Diels-Alder
EtAICl;, CHyClp, -78 t0 -5°C 100 1:0 cycloaddition of 4 under thermal

reaction conditions afforded in
44% yield a 3:1 mixture of the exo and endo stereoisomers 5a and Sb. However, a remarkable improvement of
this result could be achieved by variation of the reaction conditions (Table 1). The Lewis acid-promoted Diels-
Alder reaction of 4 provided in most cases stereoselectively the exo isomer Sa. Using ethylaluminum
dichloride8 under optimized conditions 5a was formed quantitatively.”
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We next investigated the stereoselectivity of further functionalizations at the tricyclic compound 5a (Scheme
2). The stereoselectivity of subsequent reactions of Sa was expected to result from a preferential approach of
the reagents from the less hindered exo face of the molecule (syn relative to the allylic methyl group). The
stereoselective reduction of the ketone using L-Selectride (lithium tri-sec-butylborohydride)!0 as reducing
agent afforded a ratio of 12:1 in favor of the endo carbinol 6a.!1 Chemoselective oxidation of 5a with 1.1
equivalents of mera-chloroperbenzoic acid (MCPBA) at room temperature provided stereoselectively in 15 min
the exo epoxide 7 in 78% yield. On the other hand epoxidation of the endo carbinol 6a proceeded without any
stereodifferentiation and provided quantitatively a 1:1 mixture of the exo and endo epoxides 9a and 9b. The
stereochemical assignments of the epoxides were additionally supported by H NMR NOE experiments.

Figure 1. Molecular structure of the epoxylactone 8 in the crystal. Selected bond lengths [A]: C1-C2 1.513(2),
C2-C3 1.534(2), C3-C4 1.515(3), C4-C5 1.464(3), C4-01 1.450(2), C5-01 1.435(2), C5-C6 1.496(2), C1-C6
1.519(2), C2-07 1.460(2), 07-C12 1.348(2), C12-06 1.200(2).

Treatment of 5a with an excess of MCPBA and catalytic amounts of p-toluenesulfonic acid in dichloromethane
at reflux gave the epoxylactone 8 (Scheme 2). In this transformation the stereoselective epoxidation is followed
by a regioselective Baeyer-Villiger rearrangement with migration of the bridgehead carbon. 12 Crystallization of
the epoxylactone 8 afforded crystals, which were suitable for X-ray analysis (Figure 1).13 The crystal structure
of 8 unequivocally confirmed the exo selectivity of the Lewis acid-promoted intramolecular Diels-Alder
reaction,4 the exo selectivity of the epoxidation, and the regioselectivity of the Baeyer-Villiger rearrangement.
In conclusion we achieved a diastereoselective synthesis of substituted perhydroacenaphthene derivatives via
an exo selective intramolecular Diels-Alder cycloaddition and subsequent stereoselective reactions.
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